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coherence between eastward propagation of precipitation/
convection and the wind field. The RHCP-metric, indica-
tive of the sensitivity of simulated convection to low-level 
environmental moisture, and the NGMS-metric, indicative 
of the efficiency of a convective atmosphere for exporting 
moist static energy out of the column, show robust correla-
tions with a large number of MJO skill metrics. The GEF-
metric, indicative of the strength of the column-integrated 
longwave radiative heating due to cloud-radiation inter-
action, is also correlated with the MJO skill metrics, but 
shows relatively lower correlations compared to the RHCP- 
and NGMS-metrics. Our results suggest that modifications 
to processes associated with moisture-convection coupling 
and the gross moist stability might be the most fruitful for 
improving simulations of the MJO. Though the GEF-met-
ric exhibits lower correlations with the MJO skill metrics, 
the longwave radiation feedback is highly relevant for sim-
ulating the weak precipitation anomaly regime that may be 
important for the establishment of shallow convection and 
the transition to deep convection.

Keywords  MJO · CMIP5 models · MJO skill metric · 
MJO process-oriented diagnostics · Moisture sensitivity of 
convection · Normalized gross moist stability · Greenhouse 
enhancement factor

1  Introduction

The Madden-Julian oscillation (MJO) is the dominant mode 
of tropical intraseasonal variability, and is characterized by 
eastward-propagating, planetary-scale envelops of convec-
tive cloud clusters that are tightly coupled with the large-
scale wind field. It is distinguished from other convec-
tively coupled equatorial disturbances by its large spatial 

Abstract  The Madden-Julian Oscillation (MJO) simula-
tion diagnostics developed by MJO Working Group and the 
process-oriented MJO simulation diagnostics developed by 
MJO Task Force are applied to 37 Coupled Model Inter-
comparison Project phase 5 (CMIP5) models in order to 
assess model skill in representing amplitude, period, and 
coherent eastward propagation of the MJO, and to estab-
lish a link between MJO simulation skill and parameterized 
physical processes. Process-oriented diagnostics include 
the Relative Humidity Composite based on Precipitation 
(RHCP), Normalized Gross Moist Stability (NGMS), and 
the Greenhouse Enhancement Factor (GEF). Numerous 
scalar metrics are developed to quantify the results. Most 
CMIP5 models underestimate MJO amplitude, especially 
when outgoing longwave radiation (OLR) is used in the 
evaluation, and exhibit too fast phase speed while lacking 
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extent and low frequency (zonal wavenumbers 1–3 and 
30–90 days period). The MJO interacts with a wide range 
of tropical weather and climate phenomena that include the 
onset and break of monsoons (Yasunari 1979, 1980; Lau 
and Chan 1986; Hendon and Liebmann 1990; Sperber et al. 
2000; Sultan et  al. 2003; Annamalai and Sperber 2005; 
Wheeler and McBride 2005; Lorenz and Hartmann 2006; 
Wheeler et  al. 2009), tropical cyclone activity (Nakazawa 
1988; Liebmann et al. 1994; Maloney and Hartmann 2000; 
Bessafi and Wheeler 2006; Klotzbach 2010; Jiang et  al. 
2012), and the El Niño Southern Oscillation (Kessler et al. 
1995; McPhaden 1999; Takayabu et al. 1999; Kessler and 
Kleeman 2000; Bergman et al. 2001; Kessler 2001; Zhang 
and Gottschalck 2002; Hendon et al. 2007). The MJO also 
influences mid- and high-latitudes through atmospheric tel-
econnections (Weickmann et al. 1985; Ferranti et al. 1990; 
Berbery and Nogués-Paegle 1993; Higgins and Mo 1997; 
Matthews et al. 2004; Vecchi and Bond 2004; Cassou 2008; 
L’Heureux and Higgins 2008; Lin et al. 2009; Johnson and 
Feldstein 2010; Seo and Son 2011; Garfinkel et  al. 2012; 
Guan et al. 2012; Yoo et al. 2012; Henderson et al. 2016; 
Mundhenk et al. 2016).

Despite the important role of the MJO in the weather-
climate system, our understanding of the fundamental 
mechanism of the MJO is incomplete (e.g., Zhang 2005; 
Wang 2005; Maloney and Zhang 2016). The lack of 
understanding of MJO dynamics suggests that the com-
munity has been unable to guide modelers to improve the 
MJO simulation by highlighting key processes responsi-
ble for good MJO simulations. Without the critical pro-
cesses being identified, simulation of a realistic MJO has 
remained a challenging task for most general circulation 
models (GCMs) (Slingo et  al. 1996; Waliser et  al. 2003; 
Sperber et al. 2005; Lin et al. 2006; Kim et al. 2009; Hung 
et  al. 2013; Jiang et  al. 2015). For example, Hung et  al. 
(2013) compared 20 CMIP5 models with 14 CMIP3 mod-
els’ results evaluated by Lin et al. (2006) and showed that 
the CMIP5 models exhibit an overall modest improvement 
over the CMIP3 models in the simulation of the MJO and 
several convectively coupled equatorial waves (CCEWs). 
However, many GCMs exhibit shortcomings in represent-
ing the realistic MJO variance and eastward propagation. 
Jiang et al. (2015) showed that only about one-fourth of the 
27 GCM simulations participating in the Working Group 
on Numerical Experimentation MJO Task Force (MJOTF)/
GEWEX Atmospheric System Study (GASS) MJO global 
model comparison project were able to simulate eastward 
propagation and the associated tilted vertical structure of 
the MJO. Thus, the majority of GCMs continue to exhibit 
shortcomings in representing a realistic MJO. However, 
the cause of these shortcomings is still elusive. To this 
end, various MJO skill metrics and process-oriented MJO 
diagnostics are applied to evaluate the 37 CMIP5 models 

in order to assess and highlight model processes that help 
distinguish the quality of MJO simulations.

To facilitate evaluation of model performance and 
tracking of model improvement, the CLIVAR MJO Work-
ing Group (MJOWG) developed a diagnostics package 
(MJOWG 2009) that can be used to evaluate GCMs’ MJO 
representation in a standardized way. When applied to 
GCM simulations, the diagnostic package enables model-
ers to objectively gauge their models’ strengths and weak-
nesses in representing the MJO. The diagnostics package 
has been widely used by the climate modeling community 
(Kim et al. 2009; Liu et al. 2009; other references).

The first objective of the current study is to assess the 
performance of the GCMs that participated in the CMIP5 
through use of the MJO simulation diagnostics package. 
The focus of the evaluation is on the fundamental features 
of the simulated MJO—amplitude, period, and coherent 
eastward propagation. More than one diagnostic is used for 
a particular attribute (e.g., amplitude of the MJO) to test 
the consistency among different diagnostics that aim to 
characterize a model’s fidelity at capturing the same feature 
of the MJO. Scalar metrics are derived from select diag-
nostics for a quantitative comparison between models and 
observations.

While GCM simulations of the MJO have largely 
remained at an unsatisfactory level in multi-model inter-
comparison studies, it has been continuously demonstrated 
that MJO simulation can be improved by making appropri-
ate changes to parameterizations, especially that of cumu-
lus convection (Tokioka et al. 1988; Wang and Schlesinger 
1999; Maloney and Hartmann 2001; Lin et al. 2008; Zhang 
and Song 2009; Hannah and Maloney 2011; Kim and Kang 
2012; Kim et al. 2012), as summarized in Kim and Maloney 
(2017). However, the knowledge and experience from these 
studies have not been fully utilized in operational versions 
of climate and NWP models, possibly because the methods 
that improve the MJO often degrade other aspects of model 
simulation, such as the mean state (e.g., Kim et al. 2011). 
These deficiencies reflect continued shortcomings in our 
parameterizations relevant to MJO simulation.

This gap between parameterization development and 
improving model performance motivated the recent 
development of the ‘process-oriented’ MJO simulation 
diagnostics by the MJOTF and others (Maloney 2009; 
Kiranmayi and Maloney 2011; Andersen and Kuang 
2012; Kim et al. 2014, 2015; Benedict et al. 2014; Chikira 
2014; Hannah and Maloney 2014; Arnold and Randall 
2015; Klingaman et  al. 2015a, b; Xavier et  al. 2015; 
Wolding and Maloney 2015; Wolding et al. 2016). These 
process-oriented diagnostics are designed to character-
ize resolved-scale processes that are strongly affected 
by certain aspects of parameterization schemes, and that 
are relevant to MJO dynamics. The tight connection to 
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parameterizations distinguishes the process-oriented 
diagnostics from ‘conventional’ diagnostics, such as sim-
ple characterization of the mean state. By applying these 
process-oriented diagnostics, modelers can obtain guid-
ance into where further parameterization development is 
necessary.

Thus, the second objective of the current study is to apply 
process-oriented MJO simulation diagnostics to the CMIP5 
models. After deriving scalar metrics from the process-
oriented diagnostics, we examine relationships between 
models’ MJO simulation skill and their representation of 
particular processes that are strongly affected by parameter-
ized physics. Kim et al. (2014) presented the RHCP (Rela-
tive Humidity Composite based on Precipitation) diagnos-
tic that indicates the sensitivity of simulated convection to 
low-level environmental moisture. They showed that the 
amount of 700–850 hPa RH increase required for a transi-
tion from weak to strong rain regimes had a robust statisti-
cal relationship with the East/West power ratio of equato-
rial precipitation (correlation coefficient is about 0.72 when 
28 models are used). Benedict et  al. (2014) presented the 
NGMS (Normalized Gross Moist Stability) diagnostic that 
indicates the efficiency of vertical advection in a convect-
ing atmosphere to export Moist Static Energy (MSE) out of 
the column. In 6 GCM simulations that consist of 3-pairs of 
GCMs, each with a good and poor MJO, they found a tight 
relationship between the time-mean vertical component of 
the NGMS over the Indo-Pacific warm pool region and the 
East/West power ratio of equatorial precipitation (corre-
lation coefficient is about −0.89). In addition, Jiang et  al. 
(2015) also examined the relation between the time-mean 
vertical component of the GMS over the warm pool area 
and the East/West power ratio of equatorial precipitation 
using a different model dataset, and showed a weaker, but 
statistically significant relationship (correlation coefficient 
is about −0.36). Note that Benedict et al. (2014) and Jiang 
et al. (2015) used slightly different domains for their GMS 
calculations. Most recently, Kim et  al. (2015) presented 
the GEF (Greenhouse Enhancement Factor) diagnostic 
that indicates the strength of anomalous column-integrated 
longwave radiative heating due to cloud-radiation interac-
tion. The GEF in the weak precipitation anomaly regime 
(<5  mm  day−1) showed a statistical relationship with the 
East/West power ratio of equatorial precipitation with 
a correlation coefficient of 0.58 (0.67) when 29 models 
(without one outlier model) are used.

This paper is organized as follows. The participating 
models and validation data are described in Sect.  2. The 
MJO simulation diagnostics and formulation of the MJO 
skill metrics are described in Sect.  3. Three process-ori-
ented diagnostics are investigated and related to the MJO 
skill metrics in Sect. 4. A summary and discussion are pre-
sented in Sect. 5.

2 � Participating models and validation datasets

The MJO is analyzed using 20  years (1985–2004) of 
daily mean data from the historical runs obtained from 
the CMIP5 data portal (http://pcmdi9.llnl.gov). The MJO 
simulation diagnostics are applied to 37 models, while the 
process-oriented diagnostics are applied to a subset of these 
models because of limited data availability. The model des-
ignation, host institution, convection scheme, and stratiform 
cloud scheme are given in Table 1. The reader is referred to 
Taylor et al. (2012) for a more detailed description of the 
CMIP5 models.

The CMIP5 models are validated against daily rainfall 
analyses from the Global Precipitation Climatology Project 
(GPCP; Huffman et al. 2001) for 1997–2010 and the Tropi-
cal Rainfall Measuring Mission (TRMM 3B42 version 6; 
Huffman et  al. 2007) for 1998–2010, outgoing longwave 
radiation (OLR) from the Advanced Very High Resolu-
tion Radiometer (AVHRR; Liebmann and Smith 1996) for 
1985–2004 and the Clouds and the Earth’s Radiant Energy 
System (CERES; Loeb et  al. 2009) for 2001–2010, spe-
cific humidity, air temperature, geopotential height, pres-
sure velocity from the ECMWF Reanalysis (ERA-interim; 
Dee et al. 2011) for 1985–2004, upper (250 hPa) and lower 
(850 hPa) tropospheric zonal winds (U250 and U850 here-
after) from the ECMWF Reanalysis and the NCEP–NCAR 
reanalysis (Kalnay et al. 1996) for 1985–2004. All partici-
pating models and validation datasets are interpolated onto 
2.5° × 2.5° horizontal resolution and analyzed for the boreal 
winter (November–April).

3 � MJO simulation diagnostics and MJO skill 
metrics

In this section, the MJO simulation diagnostics developed 
by MJOWG are applied to 37 CMIP5 models and MJO skill 
metrics are formulated to capture a model’s ability to simu-
late prominent features of the MJO, and report this ability 
in the form of a scalar. Statistical methods that have been 
employed to diagnose the realism of spatial and temporal 
scales and propagation characteristics of the MJO include 
(1) wavenumber-frequency power spectra (Hayashi 1982; 
Salby and Hendon 1994; Wheeler and Kiladis 1999), and 
(2) combined EOF (CEOF) analysis (Wheeler and Hen-
don 2004). These methods are components of the CLIVAR 
MJO simulation diagnostics (CLIVAR MJOWG 2009).

a.	 Wavenumber-frequency power spectrum analysis

The wavenumber-frequency power spectrum analy-
sis assesses the distribution of variance (i.e. power) in the 
wavenumber-frequency domain and provides a convenient 

http://pcmdi9.llnl.gov
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Table 1   Description of CMIP5 models used in this study

Model Institution Convection scheme/modification Cloud scheme/modification

1 ACCESS1.0 CSIRO and BOM, Australia Gregory and Rowntree (1990) Smith (1990)/Wilson et al. (2004)
2 ACCESS1.3 CSIRO and BOM, Australia Gregory and Rowntree (1990)/Hewitt 

et al. (2011)
Wilson et al. (2008)/Franklin et al. 

(2012)
3 BCC-CSM1.1 Beijing Climate Center, China Zhang and McFarlane (1995)/Zhang 

and Mu (2005)
Rasch and Kristjansson (1998)

4 BCC-CSM1.1.m Beijing Climate Center, China Zhang and McFarlane (1995)/Zhang 
and Mu (2005)

Rasch and Kristjansson (1998)

5 BNU-ESM BNU, China Zhang and McFarlane (1995)/Neale 
et al. (2008); Richter and Rasch 
(2008)

Rasch and Kristjansson (1998)

6 CanCM4 CCCma, Canada Zhang and McFarlane (1995) McFarlane et al. (2005)
7 CanESM2 CCCma, Canada Zhang and McFarlane (1995) McFarlane et al. (2005)
8 CCSM4 NCAR, USA Zhang and McFarlane (1995)/Neale 

et al. (2008); Richter and Rasch 
(2008)

Rasch and Kristjansson (1998)

9 CESM1-CAM5 NSF/DOE NCAR, USA Zhang and McFarlane (1995)/Neale 
et al. (2008); Richter and Rasch 
(2008)

Morrison and Gettelman (2008)

10 CESM1-FASTCHEM NSF/DOE NCAR, USA Zhang and McFarlane (1995)/Neale 
et al. (2008); Richter and Rasch 
(2008)

Morrison and Gettelman (2008)

11 CMCC-CESM CMCC, Italy Tiedtke (1989)/Nordeng (1994) Lohmann and Roeckner (1996)/Tomp-
kins (2002)

12 CMCC-CM CMCC, Italy Tiedtke (1989)/Nordeng (1994) Lohmann and Roeckner (1996)/Tomp-
kins (2002)

13 CMCC-CMS CMCC, Italy Tiedtke (1989)/Nordeng (1994) Lohmann and Roeckner (1996)/Tomp-
kins (2002)

14 CNRM-CM5 CNRM and CERFACS, France Bougeault (1985) Ricard and Royer (1993)
15 CSIRO-Mk3.6.0 CSIRO and QCCCE, Australia Gregory and Rowntree (1990)/Greg-

ory (1995)
Rotstayn (1997, 1998)/Rotstayn et al. 

(2000)
16 EC-EARTH European Earth System Tiedtke (1989)/Nordeng (1994) Tiedtke (1993)
17 FGOALS-g2 IAP and THU, China Zhang and McFarlane (1995)/Zhang 

and Mu (2005)
Rasch and Kristjansson (1998)/Morri-

son and Gettleman (2008)
18 FGOALS-s2 IAP and CAS, China Tiedtke (1989)/Nordeng (1994) Liu and Wu (1997)
19 GFDL-CM3 NOAA GFDL, USA Donner (1993)/Donner et al. 2001; 

Wilcox and Donner 2007
Tiedtke (1993)/Anderson et al. (2004)

20 GFDL-ESM2G NOAA GFDL, USA Moorthi and Suarez (1992) Rotstayn (1997, 1998); Tiedtke (1993)/
Rotstayn et al. (2000)

21 GFDL-ESM2M NOAA GFDL, USA Moorthi and Suarez (1992) Rotstayn (1997, 1998); Tiedtke (1993)/
Rotstayn et al. (2000)

22 HadCM3 Met Office Hadley Centre, UK Gregory and Rowntree (1990)/Greg-
ory and Allen (1991)

Rotstayn (1997, 1998)/Rotstayn et al. 
(2000)

23 HadGEM2-CC Met Office Hadley Centre, UK Gregory and Rowntree (1990)/Derby-
shire et al. (2011)

Smith (1990)/Wilson and Ballard (1999)

24 HadGEM2-ES Met Office Hadley Centre, UK Gregory and Rowntree (1990)/Derby-
shire et al. (2011)

Smith (1990)/Wilson and Ballard (1999)

25 INM-CM4 INM, Russia Betts (1986) Diagnostic calculation of cloud fraction
26 IPSL-CM5A-LR IPSL, France Emanuel (1991) Bony and Emanuel (2001)
27 IPSL-CM5A-MR IPSL, France Emanuel (1991) Bony and Emanuel (2001)
28 IPSL-CM5B-LR IPSL, France Grandpeix and Lafore (2010);Grand-

peix et al. (2010)
Bony and Emanuel (2001)

29 MIROC4h AORI, NIES, JAMSTEC, Japan Arakawa and Schubert (1974); Pan 
and Randall (1998)/Emori et al. 
(2001)

Le Treut and Li (1991)
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diagnostic of planetary-scale structure and behavior of the 
MJO. Figure  1 shows the wavenumber-frequency power 
spectra and the “MJO band” (eastward propagating, peri-
ods of 30–60 days, and wavenumbers 1–3) averaged coher-
ence-squared (coh2) of 10°S–10°N averaged precipitation 
(shaded) and U850 (contoured) obtained from observa-
tions and 37 CMIP5 models. The power spectra and coh2 
were calculated for each year and then averaged over all 
years. The observed spectral power of precipitation and 
the U850 are concentrated at the MJO band, whereas most 
CMIP5 models show a diverse range of spectral power over 
a broader range of periods and wavenumbers. In observa-
tions, the consistency between the space–time characteris-
tics of precipitation and U850 is clear (coh2 of observation 
is about 0.71), whereas most CMIP5 models show a lack 
of correspondence (the average coh2 across models is about 
0.6).

For a quantitative evaluation of model simulations, 
four MJO simulation skill metrics are formulated from the 
wavenumber-frequency power spectra and the coh2. The 
first skill metric is obtained by dividing the sum of spectral 
power over the MJO band by that of its westward propagat-
ing counterpart. This metric, which is often called as the 
Eastward/Westward power ratio (E/W ratio hereafter), indi-
cates the robustness of eastward propagating feature of the 
MJO (Zhang and Hendon 1997) and has been frequently 
used in observational (e.g., Zhang and Hendon 1997; Hen-
don et al. 1999) and modeling studies (e.g., Lin et al. 2006; 
Kim et al. 2009).

The observed E/W ratio is about 2.3, 4.0, 4.2, and 2.8 
for precipitation, OLR, U850, and U250, respectively 
(Fig. 2a). This suggests that the observed MJO’s eastward 
propagation is more robust in OLR and U850 than that in 
precipitation and U250. Most CMIP5 models underesti-
mate the E/W ratio of all variables, especially that of OLR. 

As an exception, CNRM-CM5 shows outstandingly strong 
E/W ratios compared to other models, with that of U850 
(11.1) out of range in the figure. A majority of the mod-
els exhibit E/W ratios of U850 that are greater than that of 
other variables, consistent with the finding of Zhang et al. 
(2006). IPSL-CM5A-LR and IPSL-CM5B-LR are devel-
oped from same modeling center, but they exhibit substan-
tially different E/W ratios, particularly in the wind fields 
(difference between two models is about 3.2 and all CMIP5 
inter-model spread is about 2 for the U850 E/W ratio). The 
change in MJO performance across models from the same 
center could be related to impacts from changing param-
eterization schemes among model versions. IPSL-CM5A-
LR and IPSL-CM5B-LR use different convection and strat-
iform cloud schemes (Table 1). Kim et al. (2015) attributed 
the stronger MJO in IPSL-CM5B-LR to the stronger cloud-
longwave radiation feedback in that model, likely due to the 
difference in parameterization schemes.

The second skill metric from the wavenumber-fre-
quency power spectrum, which we refer to as the E/O 
ratio, is formulated by normalizing the sum of spec-
tral power within the MJO band by the observed value. 
The observed values are 0.02  mm2 day−2, 1.20 W2 m−4

, 0.026 m2 s−2, and 0.10 m2 s−2 for precipitation, OLR, 
U850, and U250, respectively. The use of the second 
metric is complementary to the E/W ratio and it is moti-
vated by the possibility that a model with large E/W ratio 
could still exhibit unrealistically small eastward propa-
gating power. Figure  2b shows that most CMIP5 mod-
els underestimate the E/O ratios, especially for variables 
that are more directly related to convection (precipitation 
and OLR). As for the E/W ratio, CNRM-CM5 shows an 
excessively strong E/O ratio compared to other models, 
with its E/O ratio of U850 (3.44) and U250 (2.33) off 
scale in the figure. Models that show superior skill in the 

Table 1   (continued)

Model Institution Convection scheme/modification Cloud scheme/modification

30 MIROC5 AORI, NIES, JAMSTEC, Japan Chikira and Sugiyama (2010) Watanabe et al. 2009; Wilson and Bal-
lard (1999)

31 MIROC-ESM AORI, NIES, JAMSTEC, Japan Pan and Randall (1998)/Emori et al. 
(2001)

Le Treut and Li (1991)

32 MIROC-ESM-CHEM AORI, NIES, JAMSTEC, Japan Pan and Randall (1998)/Emori et al. 
(2001)

Le Treut and Li (1991)

33 MPI-ESM-LR MPI, Germany Tiedtke (1989)/Nordeng (1994) Sundqvist et al. (1989)
34 MPI-ESM-MR MPI, Germany Tiedtke (1989)/Nordeng (1994) Sundqvist et al. (1989)
35 MPI-ESM-P MPI, Germany Tiedtke (1989)/Nordeng (1994) Sundqvist et al. (1989)
36 MRI-CGCM3 MRI, Japan Tiedtke (1989)/Nordeng (1994);Yuki-

moto et al. (2011)
Tiedtke 1993; ECMWF 2004; Jakob 

2000
37 NorESM1-M Norwegian Climate Centre Zhang and McFarlane (1995)/Neale 

et al. (2008); Richter and Rasch 
(2008)

Rasch and Kristjansson (1998)
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Fig. 1   November–April wavenumber-frequency power spectra of 
10°S–10°N averaged precipitation (shaded) and 850 hPa zonal wind 
(contoured with 0.015 interval) and coh2 (texted on the upper right 
of each plot) averaged over MJO band (period 30–60 days and wave-

number 1–3). Power spectra and coh2 were calculated for each year 
and then averaged over all years of data. Units of power spectra for 
the precipitation and 850 hPa zonal wind are mm2 day−2 and m2 s−2 
per frequency interval per wavenumber interval, respectively
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E/O ratio also perform better in the E/W ratio. Table  2 
shows the correlation coefficient between the E/W ratios 
and the E/O ratios among the models. The correlation 
coefficient is especially high for U850 (0.93) and U250 
(0.96). The high correlation between the E/W ratio and 

E/O ratio suggests that the E/W ratio is well correlated 
with eastward propagation within MJO band. Thus, the 
E/W power ratio that has been used in many studies is 
a reasonable choice to assess how well a model captures 
the robust eastward propagation of the MJO.
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Fig. 1   (continued)



4030	 M.-S. Ahn et al.

1 3

The third skill metric is obtained by the MJO band 
averaged coh2 of precipitation with U850 and precipitable 
water. The observed values of the coh2 of precipitation with 
U850 and precipitable water are about 0.7 and 0.75, respec-
tively. It indicates the strong coupling of precipitation with 
U850 and precipitable water. These results are consistent 
with those of Yasunaga and Mapes (2012) who also showed 
the coh2 of precipitation with precipitable water in observa-
tions. Most CMIP5 models underestimate the coh2 of pre-
cipitation with U850 and precipitable water. The CNRM-
CM5, which simulated excessively strong E/W ratio and 
E/O ratio, shows larger coh2 than other models and even 
observations. Table  2 shows the correlation between coh2 
and other MJO skill metrics. The coh2 between precipita-
tion and U850 is well correlated with the E/W ratio and the 
E/O ratio of all variables, especially the E/O ratio of pre-
cipitation and U850 that have a correlation greater than 0.8.

For the fourth skill metric we estimate the MJO perio-
dicity (PWFPS, Fig.  2d) by dividing the sum of power-
weighted period (i.e. 1/frequency) by the sum of power 
over the period of 20–100 days and for each of these sums, 
considering only wavenumbers 1–3. In observations, the 
PWFPS obtained from the four variables used in this study 
ranges from 38  days (U250) to 42  days (U850). Some 
models (BCC-CSM1-1, BCC-CSM1-1-m, MIROC-ESM, 
MIROC-ESM-CHEM, and MIROC4h) exhibit shorter-
than-observed periodicity across all four variables. These 
models also tend to show the E/W ratio and the E/O ratio 
that are smaller than that of other models. The CMCC 
model group (CMCC-CESM, CMCC-CM, CMCC-CMS) 
exhibits relatively large spread (~10  days) in PWFPS esti-
mated from different variables, with longer and shorter 
periodicity in OLR and U250, respectively. Overall, PWFPS 
from U250 is shorter than those from other variables.

Fig. 2   a East/West power ratio 
(E/W ratio), b Normalized East 
power by observation (E/O 
ratio), c coh2 of precipitation 
with precipitable water and 
U850, and d dominant eastward 
period from the wavenumber-
frequency power spectra 
(PWFPS). Closed squares, closed 
triangles, closed circles, and 
open circles indicate observa-
tions [GPCP (1997–2010), 
AVHRR (1985–2004), ERA-int 
(1985–2004)], additional obser-
vations [TRMM (1998–2010), 
CERES (2001–2010), NCEP1 
(1984–2010)], multi-model 
means, and CMIP5 models, 
respectively. Vertical lines indi-
cate inter-model spreads. Dif-
ferent color indicates each vari-
able. The observed East powers 
for normalization of models are 
0.02 mm2 day−2, 1.20 W2 m−4

, 0.026 m2 s−2, and 0.10 m2s−2 
for the PRCP (GPCP), OLR 
(AVHRR), U850 and U250 
(ERA-int), respectively. The 
value of CNRM-CM5’s E/W 
ratio of U850 (11.1) and E/O 
ratio of U850 (3.44) and U250 
(2.33) are out of range in the 
figure

a

b

c

d
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b.	 CEOF analysis

In the CEOF analysis (Wheeler and Hendon 2004), a 
standard EOF analysis is performed using three variables—
OLR, U850, and U200. Each variable is meridionally aver-
aged and normalized individually before being merged. 
The use of the combined field is motivated by the observa-
tion that the large-scale convective and circulation anoma-
lies are tightly coupled. In observations, the leading pair 
of CEOFs of intraseasonal (20–100-day bandpass filtered) 
anomalies explains more than 40% of total intraseasonal 
variability and represents an eastward propagation with 
periodicity of about 40 days.

We calculate the CEOFs using 15°S–15°N averaged 
20–100-day band-pass filtered variables, following the pro-
tocol of the MJOWG (2009). This is slightly different from 
the original method used by Wheeler and Hendon (2004), 
who used unfiltered fields, since they were developing an 
approach useful for real-time monitoring and prediction. 
OLR, U850, and U250 (instead of U200) are used in the 
CEOF analysis because of limited data availability of the 
CMIP5 models. Nine models are excluded from the CEOF 
analysis because at least one of the three variables required 
was unavailable.

Figure  3 shows the first two CEOFs from the obser-
vations and models, noting that the sign and order of the 
model Eigen modes are adjusted to best match observa-
tions. In observations, the first (second) CEOF mode cap-
tures a convective signal (negative OLR) centered at about 
90°E (130°E) with associated low-level convergence and 
upper-level divergence. Most CMIP5 models simulate rea-
sonably well the first two CEOF patterns, especially the 
circulation anomalies (mean values of spatial correlation 
coefficients along longitude between observations and each 
model are about 0.67, 0.79 and 0.73 for the OLR, U850 and 
U250, respectively). The magnitude of the peak convective 
signal over the warm pool tends to be weaker in the mod-
els compared to observations (Fig.  3a, d). Figure  3g also 
shows the lead-lag correlation of first two CEOF princi-
pal component time series (PCs) formulated by projecting 
the unfiltered anomaly data onto the CEOF’s eigenvector. 
Because we use unfiltered anomalies to calculate PCs, it is 
not guaranteed that the PCs have intraseasonal time scales. 
If a model has variability of a shorter-than-intraseasonal 
time scale whose spatial patterns of OLR, U850, and U200 
resemble that of the MJO, PCs and lag-correlation between 
them would show this shorter time scale. Thus, using unfil-
tered anomalies in the calculation of the PCs is a stricter 
test for GCMs than using filtered anomalies. In observa-
tions, the first CEOF mode (convection center over the 
Indian Ocean) leads the second CEOF mode (convection 
center over the west Pacific) by about 10 days, indicating 
the eastward propagation of MJO from Indian Ocean to 

Western Pacific. The models are in general able to capture 
the lead-lag relationship between the two leading modes, 
while they show large spread in values of maximum corre-
lation, and the lag day at which the correlation maximizes. 
Most models simulate lower correlations between the lead-
ing PCs than observed.

In order to visualize the propagation of the MJO repre-
sented in each model, Fig. 4 shows the hovmӧller diagrams 
of MJO-phase composited 20–100-day precipitation aver-
aged between 10°S–10°N. The MJO phase composites 
are based on the phase-space plots of the PC time series 
formulated by projecting the 20–100-day filtered anomaly 
data onto the CEOF’s eigenvector, as described in MJOWG 
(2009). In observations, the MJO rainfall signal propa-
gates from Indian Ocean to Western Pacific, whereas many 
CMIP5 models fail to produce coherent eastward propaga-
tion of MJO rainfall signal compared to observations. Some 
models struggle to propagate the signal into the West-
ern Pacific (BCC-CSM1-1-m, BNU-ESM, FGOALS-s2, 
NorESM1-M, HadGEM2-CC, MIROC4h), some models 
have standing oscillation over Maritime Continent (GFDL-
ESM2G, GFDL-ESM2M, IPSL-CM5A-LR, IPSL-CM5A-
MR, MIROC-ESM, MIROC-ESM-CHEM, INMCM4), and 
some models show a very weak signal over all longitudes 
(CanESM2, FGOALS-2g). For example, when consider-
ing the 150°E as a critical region, only about 6–8 out of 28 
CMIP5 models propagate MJO rainfall east of 150°E rea-
sonable well (BCC-CSM1-1, CMCC-CM, CMCC-CMS, 
CNRM-CM5, IPSL-CM5B-LR, MRI-CGCM3). Hung 
et al. (2013) and Jiang et al. (2015) showed similar results 
using lead-lag correlation diagram of MJO time-scale fil-
tered precipitation.

Four skill metrics are derived from the CEOF analysis. 
The first metric is the percentage variance explained by 
the two leading modes. In observations, the leading two 
CEOFs explain about 41% of the total variance (Fig. 5a). 
These two modes also explain 59, 39, and 31% of the vari-
ance of U850, U250, and OLR respectively. The sequence 
of variance explained by each variable of the CEOF is 
well simulated in CMIP5 models, but most CMIP5 models 
underestimate the magnitude of the variance explained by 
each variable, especially for OLR.

The second skill metric is obtained from the spatial cor-
relation coefficients between observations and models for 
the hovmӧller diagrams of MJO phase composited precipi-
tation in Fig. 4 and for the first two CEOFs in Fig. 3. For 
the skill metric of the first two CEOFs, the spatial correla-
tion coefficients of mode-1 and mode-2 are averaged to pro-
duce a single scalar metric. In the models, the lowest spatial 
correlation coefficient of the CEOFs appeared in the OLR 
among three variables. The FGOALS-g2 model showed an 
especially large difference of correlation between OLR and 
the wind variables. The FGOALS-g2 model also showed 
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weak coupling of precipitation with the wind field and 
moisture (Figs. 2c, 7a). The multi-model mean of the spa-
tial correlation coefficients for the hovmӧller diagrams of 
MJO phase composited precipitation is about 0.48.

The third and fourth skill metrics are derived from 
the lead-lag correlation between PCs of the two lead-
ing modes (Fig. 3g). The third metric, a measure of the 
coherency in the MJO propagation, is formulated by 

averaging the absolute values of maximum and mini-
mum lead-lag correlation coefficients (c.f. Sperber and 
Kim 2012). The third metric will be referred to Cmax. 
The observed Cmax is about 0.47, whereas the value 
of CMIP5 multi-model mean is about 0.36 indicat-
ing that most CMIP5 models’ MJO propagation is not 
as coherent as observed. The fourth metric, an estimate 
of MJO periodicity from the CEOF analysis (PCEOF), 

a b

c d

e f

g

Fig. 3   First two Combined EOF’s of 15°S–15°N averaged 20–100-
day OLR, U850, and U250. a–c are first mode, and d–f are second 
mode. Sign and order of each Eigen mode are adjusted to be similar 
to observation. The values on the upper right of each plot indicate the 
mean of correlation coefficients between observation and each model. 

g Lead-lag correlation of first two PC time series formulated by pro-
jecting the unfiltered anomaly data onto the Combined EOF’s eigen-
vector. The thick black curves and thin grey curves indicate observa-
tions and the CMIP5 simulations, respectively
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is formulated by twice the time interval between maxi-
mum lag-correlation and minimum lag-correlation. The 
observed PCEOF is about 36  days, whereas the value of 
CMIP5 multi-model mean is about 34  days, which is 
similar to PWFPS (Fig.  2d). The correlation coefficients 

between the modeled values for PCEOF and PWFPS are 
0.58, 0.69, 0.63, and 0.58 for precipitation, OLR, U850, 
and U250, respectively (Table 3).

g

j k

h

l

m n o

i

d e f

a b c

Fig. 4   Hovmӧller diagrams of MJO phase composited 20–100-
day precipitation averaged between 10°S and 10°N. The MJO phase 
composites are based on the PC time series formulated by projecting 

the 20–100-day filtered anomaly data onto the CEOF’s eigenvector 
shown in Fig.  3. The vertical dotted lines in each plot indicate the 
150°E longitude
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4 � Process‑oriented diagnosis

In this section, we examine whether good and poor MJO 
models are characterized by a different representation of 
processes that are hypothesized to be important for simu-
lation of a realistic MJO. These process-oriented diagnos-
tics aim to provide insights into how parameterizations of 
physical processes in GCMs can be modified to improve 

the MJO simulation. Here we study three process-oriented 
diagnostics (RHCP-, NGMS-, and GEF-diagnostics; see 
Sect. 1). Scalar metrics are derived from each process-ori-
ented diagnostic to investigate their relationship with the 
MJO skill metrics developed in Sect. 3.

To formulate the RHCP-diagnostic presented by Kim 
et  al. (2014), the low-level (850–700  hPa) RH composite 
based on precipitation percentile is performed over the 

ab ac

y z aa

v w x

rp q

us t

Fig. 4   (continued)
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Indo-Pacific warm pool (60°E–180°E, 15°S–15°N) with 
land masked out (Fig. 6). In observations, the low-level RH 
increases as the precipitation percentile increases, indicat-
ing coupling between convection and low-level moisture. 
Most CMIP5 models exhibit a low-level RH increase as the 
precipitation percentile increases, but the RH for a given 
precipitation percentile can vary substantially compared 

to the observations. To objectively evaluate the relation-
ship between convection and low-level moisture, the 
RHCP-metric is formulated as the low-level RH difference 
between upper 10% precipitation percentile and lower 20% 
precipitation percentile (Kim et al. 2014):

RHCP metric = RH
upper 10%

850+700
− RH

lower 20%

850+700
.

Fig. 5   a Percentage variance 
(pct) obtained from sum of first 
two combined EOF modes, 
b spatial correlation between 
observations and models for the 
MJO phase hovmӧller diagram 
averaged between 10°S–10°N 
and first two combined EOF’s, 
c maximum correlation (CMAX) 
between first two combined 
EOF PC time series, and d 
dominant eastward period from 
the first two combined EOF 
modes (PCEOF). Closed squares, 
closed circles, and open circles 
indicate observations, multi-
model means, and CMIP5 mod-
els, respectively. Vertical lines 
indicate inter-model spreads. 
Different color indicates each 
variable. The percentages of 
variance for individual variables 
in a are obtained using the vari-
ance of each variable explained 
by the first and second CEOFs 
and the total variance of the 
variable

a

b

c

d

Table 3   Correlation coefficient between MJO skill metrics representing MJO period in CMIP5 models

Period from WFPS Period from CEOF Mean

PRCP OLR U850 U250

Period from WFPS
 PRCP 0.82 0.77 0.59 0.58 0.69
 OLR 0.82 0.81 0.73 0.69 0.77
 U850 0.77 0.81 0.88 0.63 0.77
 U250 0.59 0.73 0.88 0.58 0.70

Period from CEOF 0.58 0.69 0.63 0.58 0.62
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The observed RHCP-metric ranges from 28.8 to 42.5, 
depending on the precipitation dataset used in the analysis 
(Fig.  7a). The large uncertainty of the observed RHCP-
metric is caused by the uncertainty of the magnitude of 
weak precipitation (less than about the 45 percentile). Most 
CMIP5 models show RHCP-metric values that are within 
the uncertainty range of observed values (Fig. 7a).

The correlation between the simulated RHCP-metric 
and various MJO skill metrics is assessed in Fig. 7b. The 
RHCP-metric is significantly correlated with most MJO 
skill metrics, including the E/W ratio and E/O ratio of pre-
cipitation, coh2 of precipitation with precipitable water and 
U850, CEOF percentage variance of OLR, the spatial corre-
lation between observations and models for the MJO phase 
hovmӧller diagram, and for the CEOF eigenvector of OLR 
for which R ~ 0.6. This indicates that models with stronger 
(weaker) coupling strength between low-tropospheric mois-
ture and convection have a better (poorer) MJO. For mod-
els with too weak a coupling strength, improvement in this 
quantity would lead to a better MJO. Even considering the 

Fig. 6   Relative Humidity Composite based on PRCP percentile 
(RHCP) averaged between 850 hPa and 700 hPa. The Indian Ocean 
area (60°E–180°E, 15°S–15°N) is used and land area is excluded 
from thecalculation. Thick black solid, long-dash, short-dash curves 
indicate GPCP (1997–2010), TRMM (1998–2010), ERA-int (1985–
2004) precipitation respectively combined with ERA-interim RH, and 
thin grey curves indicate the CMIP5 simulations

Fig. 7   a RHCP-metric for 
observations and the CMIP5 
simulations. Closed square, X 
mark, closed triangle, closed 
circle, and open circles indicate 
GPCP (1997–2010), TRMM 
(1998–2010), ERA-int (1985–
2004), multi-model mean, and 
CMIP5 models, respectively. 
Vertical lines indicate the inter-
model spread. b Correlation 
coefficient between RHCP-
metric and MJO skill metrics. 
The dotted line indicates 5% 
significance level when 27 
models are used

a

b
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highest correlation score between this diagnostic and MJO 
skill, this only leads to an explained variance of about 
35–40%, and thus additional parameterized quantities have 
to be investigated to more fully improve MJO fidelity.

In many previous studies, the gross moist stability 
(GMS) is presented to examine the relationship between 
convection and large-scale circulation. For example, Bene-
dict et al. (2014) showed that the E/W ratio of precipitation 
is more related to the vertical component of normalized 
GMS (NGMS) than the horizontal component of NGMS. 
The relationship between vertical component of NGMS 
obtained from the mean state and various MJO skill metrics 
are examined in this study. The NGMS-metric is formu-
lated using the time-mean vertical profiles of omega, moist 
static energy (MSE), and dry static energy (DSE) over the 
Indo-Pacific warm pool area (60°E–180°E, 15°S–15°N) 
with land masked out:

where the over-bar indicates the time mean, angle 
bracket indicates the column vertical integration from 
1000 to 100 hPa, MSE = CpT + gz + Lq is the moist static 
energy, and DSE = CpT + gz is the dry static energy. The 
magnitude and shape of the mean vertical profile of omega 
is diverse across the CMIP5 models, and the MSE of all 
levels is underestimated in most CMIP5 models (Fig.  8). 
The NGMS-metric is mainly influenced by the combination 
of mean vertical profiles of omega and MSE.

The NGMS-metric is about 0.25 for the observa-
tions and about 0.33 for the multi-model mean, with 
many CMIP5 models overestimating the NGMS-metric 
(Fig.  9a). This indicates that most CMIP5 models more 
efficiently discharge MSE from the column through 

NGMS metric =
< 𝜔̄

𝜕MSE

𝜕p
>

< 𝜔̄
𝜕DSE

𝜕p
>

,

vertical convective motions compared to the observa-
tions. The simulated NGMS-metric has a significant 
negative correlation with half of the MJO skill metrics, 
including the E/W ratio and E/O ratio of most variables, 
PWFPS of most variables, and PCEOF (Fig. 9b). This indi-
cates that a smaller NGMS, which means a less efficient 
discharge of MSE from the column through vertical con-
vective motions, should result in a stronger MJO ampli-
tude, and a slower and more realistic MJO propagation 
speed.

For the third process-oriented diagnostic we use 
the GEF-diagnostic presented by Kim et  al. (2015). 
It is calculated over the Indo-Pacific warm pool area 
(60°E–180°E, 15°S–15°N) with land masked out, as the 
ratio of column-integrated longwave radiative heating 
to column-integrated latent heating and is calculated for 
precipitation anomaly bins (Fig. 10):

where the GEF =
−OLR anomaly

L×PRCP anomaly
 is the latent heat of 

condensation. Note that the precipitation anomaly bins 
are defined in log-scale following Kim et al. (2015). The 
surface longwave anomaly is assumed to be small; hence 
the OLR anomaly is used as a measure of the column-
integrated longwave radiative heating anomaly. In obser-
vations and in models, the maximum GEF tends to appear 
in relatively weak precipitation anomaly regimes, and the 
GEF decreases as the precipitation anomaly increases. 
This indicates that the cloud-longwave radiation feedback 
is larger in the weak precipitation anomaly regime than in 
the strong precipitation anomaly regime. All CMIP5 
models underestimate the GEF in the weak precipitation 
anomaly, but the GEF in the strong precipitation anomaly 
is relatively well simulated.

GEF =
−OLR anomaly

L × PRCP anomaly
,

a b

Fig. 8   Vertical profiles for the Indo-Pacific warm pool area (60°E–180°E, 15°S–15°N) for a omega and b Moist static energy (MSE) for the 
observations (thick black curve) and the CMIP5 simulations (thin grey curves). Land gridpoints have been excluded from the calculation
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Kim et  al. (2015) found that the maximum correla-
tion between the E/W ratio of precipitation and the GEF 
appeared when the latter was quantified using only the 
weak precipitation anomaly regime. Accordingly, they for-
mulated the GEF-metric as the weighted average of GEF 
over 1-5mm/day precipitation anomaly regime. The GEF-
metric is about 0.31 for the observations and about 0.25 for 
the multi-model mean, with most CMIP5 models underesti-
mating the GEF-metric (Fig. 11a). The correlation between 
the simulated GEF-metric and various MJO skill metrics is 
presented in Fig. 11b. Compared to the RHCP- and NGMS-
metric, the GEF-metric does not show as robust a relation-
ship with the MJO skill metrics. The GEF-metric is most 
correlated with the E/W ratio of precipitation and the E/O 
ratio of precipitation and OLR. This suggests that the MJO 
in the CMIP5 models has the possibility to improve with 
an increase of longwave radiative heating in the weak pre-
cipitation anomaly regime. To increase the longwave radia-
tive heating in the weak precipitation anomaly regime, the 
parameterizations of cloud properties and cloud-radiation 

interaction need to be modified. Kim et al. (2015) showed 
that the model with strong longwave radiative heating in 
the weak precipitation anomaly has a larger cloud fraction, 
larger cloud ice water content, lower cloud liquid water 
content, and larger precipitable water.

5 � Summary and discussion

This study applies the MJO diagnostics developed by the 
MJOWG to 37 CMIP5 models, and formulates numerous 
MJO skill metrics that are used to assess the model perfor-
mance in simulating the prominent features of the MJO. 
The common problems found in this study are that most 
models underestimate MJO amplitude, especially in OLR, 
and struggle to generate coherent eastward propagation. 
Additionally, most models simulate an MJO that propa-
gates too fast compared to observations, similar to previ-
ous model studies of the MJO (e.g., Kim et al. 2009). On 
the other hand, Hung et al. (2013) and Jiang et al. (2015) 

Fig. 9   a The Normalized Gross 
Moist Stability (NGMS) metric 
for the observations and the 
CMIP5 simulations. Closed 
square, closed circle, and open 
circles indicate observations, 
the multi-model mean, and the 
CMIP5 models, respectively. 
Vertical lines indicate the inter-
model spread. b Correlation 
coefficient between the NGMS-
metric and the MJO skill met-
rics. The dotted line indicates 
the 5% significance level when 
23 models are used

a

b
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showed that the MJO propagation speed of some CMIP5 
models in the Indian Ocean tends to be slower than 
observed, but they indicated that this is due to too strong 
a persistence of precipitation. When considering the zonal 
extent of the propagating signal in convection, most mod-
els did not propagate the MJO rainfall signal from Indian 
Ocean to Pacific region, as observed.

Additionally, the MJO skill metrics formulated in this 
study are compared statistically with MJO process-oriented 
diagnostics to ascertain which aspects of physical process 
parameterizations should be improved in GCMs to result in 
better MJO simulations. We find that (1) the RHCP-metric 
is positively correlated with nearly all of the MJO metrics, 
(2) the NGMS-metric is negatively correlated with the 
E/W power ratio of precipitation and OLR, the E/O ratio of 
OLR, and PWFPS of all variables, and (3) the GEF-metric is 
correlated with the E/W ratio of precipitation and the E/O 
ratio of precipitation and OLR. Thus, the simulation of the 
MJO is influenced by many processes suggesting a variety 
of approaches for improving MJO simulation.

Fig. 10   The Greenhouse Enhancement Factor (GEF) diagnostics 
for the observations (AVHRR and GPCP (1997–2010): thick black 
curve, AVHRR and TRMM (1998–2010): long-dashed curve) and 
the CMIP5 simulations (thin grey curves). The Indo-Pacific warm 
pool area (60°E–180°E, 15°S–15°N) is used and land gridpoints have 
been excluded from the calculation. Note that precipitation anomaly 
is plotted on a log-scale. The inset plot is expanded plot with different 
range of x and y axis

Fig. 11   a The GEF-metric for 
the observations and the CMIP5 
simulations. Closed square, 
closed triangle, closed circle, 
and open circles indicate obser-
vations [AVHRR and GPCP 
(1997–2010)], additional obser-
vations [AVHRR and TRMM 
(1998–2010)], the multi-model 
mean, and the CMIP5 models, 
respectively. Vertical lines indi-
cate the inter-model spread. b 
Correlation coefficient between 
GEF-metric and MJO skill met-
rics. The dotted line indicates 
the 5% significance level when 
28 models are used

a

b
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Jiang et  al. (2015) also examined the relationship 
between the MJO skill metric and MJO process-oriented 
metrics using 27 GCM simulations participating in the 
MJOTF/GASS MJO global model comparison project. 
They showed that the low-level RH difference between 
high- and low-rain events (consistent with RHCP-metric 
in this study) and the seasonal mean gross moist stability 
(consistent with NGMS-metric in this study) are signifi-
cantly correlated with the E/W power ratio of precipita-
tion, which is consistent with results of this study. They 
also showed that the cloud-radiative feedback is negatively 
but insignificantly correlated with the E/W power ratio 
of precipitation, which is an inconsistent result with this 
study that uses the GEF-metric. This inconsistency might 
be caused by the difference in the cloud-radiative feedback 
metrics used. Jiang et  al. (2015) formulated their cloud-
radiative feedback metric based on regressed radiative heat-
ing and latent heating against 20–100-day precipitation for 
all data, while the GEF-metric used in the present study is 
based on the radiative heating and latent heating on each 
precipitation anomaly bin, and only weak precipitation bins 
are used to construct the GEF-metric. Kim et  al. (2015) 

showed that GEF-metrics from mid- and strong- precipita-
tion bins are insignificantly correlated with the E/W power 
ratio of precipitation.

The process-oriented diagnostics used in this study have 
a more direct link to parameterization schemes than the 
conventional performance-oriented diagnostics. The mois-
ture-convection coupling measured by the RHCP-metric 
has been shown to be affected by parameters in the con-
vection scheme such as the fractional entrainment rate and 
the efficiency of convective rain re-evaporation (e.g., Kim 
et  al. 2012). The models that exhibit lower-than-observed 
values of the RHCP-metric would benefit by increasing the 
values of these parameters in the convection scheme. The 
NGMS-metric is sensitive to the vertical distribution of the 
vertical motion in a convecting column, with a more top- 
(bottom-) heavy profile making the NGMS-metric higher 
(lower). The vertical profile of vertical motion is affected 
by the cumulus massflux, whose vertical profile is deter-
mined by the fractional entrainment and detrainment rates. 
This suggests that improving the fractional entrainment and 
detrainment rates would improve the NGMS-metric of a 
model. The GEF-metric could potentially be affected by the 

Fig. 12   The percentage of 
simulated 250 hPa velocity 
potential (VP250) spectral 
power relative to the observa-
tions within 30–70 day period 
and wavenumber 1 component 
based on the wavenumber-
frequency power spectra of 
10°N–10°S averaged VP250 
(Jun–May) for a CMIP5 and 
b AMIP1 estimated from the 
Fig. 8 of Slingo et al. (1996). 
The 50% lines are indicated by 
dashed line

a

b
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parameterizations of convection, clouds, and radiation. This 
is because the calculation of the longwave radiative flux 
is affected by (1) how much of the water vapor and cloud 
condensates are transported upward in convective towers 
to form large-scale clouds (convection scheme), (2) how 
large-scale clouds are distributed in the grid cell and how 
long the clouds persist in association with the anomalous 
precipitation (large-scale cloud scheme), and (3) the opti-
cal properties of the cloud condensates (radiation scheme). 
Modelers should focus on parameters that affect these fea-
tures to improve the GEF-metric.

Our insight into the processes relevant to the MJO has 
improved over the last 20 years, and importantly the advent 
of standardized experimentation (e.g., AMIP and CMIP) 
and more extensive high frequency model output have con-
tributed to our improved insights. Despite the comparative 
paucity of data in the AMIP1 era simulations, it is possible 
to address the question of whether models have improved 
in the intervening 20 years. Pioneering MJO model studies, 
such as Slingo et al. (1996), recognized the utility of eval-
uating the space–time structure of the MJO using wave-
number-frequency analysis, an essential technique utilized 
herein. Though not a primary field analyzed today due to 
the more comprehensive model output presently available, 

the upper-tropospheric velocity potential, used in Slingo 
et al. (1996) for AMIP1 fields, clearly captures the eastward 
propagation of the MJO. As such, Fig.  12 shows the per-
centage of simulated 250  hPa velocity potential (VP250) 
spectral power relative to observations within periods of 
30–70 days for wavenumber 1 using 10°N–10°S averaged 
data. The upper panel is for the CMIP5 models and lower 
panel is for the AMIP1 models, estimated from Fig.  8 of 
Slingo et  al. (1996). When considering a 50% threshold, 
the results indicate that the CMIP5 models are better than 
the AMIP1 models, with only 4 out of 15 AMIP1 models 
but 13 out of 32 CMIP5 models exceeding this threshold 
(AMIP1 vs CMIP5 is 27 vs. 40%). Recently, Hung et  al. 
(2013) compared the CMIP5 and CMIP3 models using the 
same diagnostics as Lin et al. (2006). When considering the 
50% threshold of observed MJO variance over the Indo-
Pacific warm pool (60°E–180°E, 15°S–15°N), only 4 out 
of 20 CMIP5 models (20%) and 2 out of 14 CMIP3 models 
(14%) exceeded this threshold, as estimated from Fig. 7a of 
Hung et al. (2013) and Fig. 9a of Lin et al. (2006).

Though progress is evident, MJO simulation in GCMs 
remains a challenging problem. Intraseasonal precipitation 
variability is a poorly simulated quantity among CMIP5 
models (Fig.  13). Little mean precipitation spread exists 

a b c

d e f

Fig. 13   Scatter plots of the difference (%) from the multi-model 
mean for the a, d mean state and total standard deviation, b, e mean 
state and 20–100-day filtered standard deviation, c, f mean state and 
MJO (30–60  days, 1–3 wavenumber) filtered standard deviation of 

precipitation over the a–c Indian Ocean (60°E–120°E, 15°S–15°N) 
and d–f Western Pacific (120°E–180°E, 15°S–15°N). The difference 
% is calculated by “(model-mmm)*100/mmm”, the “mmm” is multi-
model mean
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among individual models over the Indo-Pacific warm pool 
area, especially in the Western Pacific with most models 
within about 20% of the multi-model average (Fig.  13d-
f). On the contrary, the intraseasonal and total variability 
of precipitation, measured by standard deviation of intra-
seasonal filtered and raw precipitation anomalies, exhib-
its substantial spread that is about three times larger than 
that of mean precipitation in the Western Pacific. The large 
spread in intraseasonal precipitation variability would at 
least partly be associated with that of the MJO, the domi-
nant mode of tropical intraseasonal variability. This sug-
gests that we need to better constrain the MJO to reduce the 
spread in intraseasonal variability among models.

Our results suggest that modifications to processes asso-
ciated with the relative humidity and convective coupling, 
and the gross moist stability might be the most fruitful, as 
these have significant correlations with the largest number 
of MJO skill metrics. The Greenhouse enhancement factor 
exhibits fewer significant correlations with the MJO skill 
metrics, and correlates best with the E/W ratio of precipi-
tation and the E/O ratio of precipitation and OLR. In this 
case, the longwave radiation feedback for the weak precipi-
tation anomaly regime requires the most attention.
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